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liquid interface. Thus, while the heat transfer coefficient 
improves with decreasing 1, and increasing Le, the overall 
heat effect associated with the absorption process is reduced 
under this condition. 
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equation (23). This deviation factor is defined as : 
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the lower the value of C,,. It should be noted that larger A 
and lower Le lead to a higher temperature at the vapor- 
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1. INTROOUCTION 2. FORMULATION AND ANALYSIS 

THE DESCRIPTION of thermal convection in a porous medium 
is mainiy based on Darcy’s law, which includes boundary 
and inertial effects [I]. The global effects of the fluid are 
derived by using volume average techniques [2-31. Linear 
stability theory of the steady state may predict the onset of 
thermal convection at the marginal state [4], while nonlinear 
stability theory can differentiate the flow patterns and deter- 
mine the subcritical instability [5%7]. Empirically, the cell 
patterns, first appearing at the marginal state, continue to 
manifest the same patterns in the weakly nonlinear stability 
state [S]. Foster [9] treats the thermal convection of transient 
state as an initial value problem. Amplification theory. 
requiring the empirically determined initial conditions, is 
applied to predict the critical time of thermal convection 
[lo--131. 

The dimensionless governing equations and conditions of 
the perturbed state, assuming the Boussinesq approximation, 
are 

The onset of thermal convection of both steady and tran- 
sient states in a porous medium rotating with an angular 
frequency is considered. Both upper and lower boundaries 
are free and fixed at a constant temperature T,. The initial 
temperature distribution is nonlinear and is increased from 
the below at a constant rate c. 

a 

i > 
a-DZ T=O 

M’ = L.&Q = D4,v z 0 = 0, at z zz (),I (4) 

T(0, t) = ct. T( 1, t) = 0 and T(z, 0) = 2, (l-zb (5) 

The solution for the basic temperature, from equations (3) 
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NOMENCLATURE 

n wavenumber, (k: +k:)“’ X, y, z Cartesian coordinates. 
A,(t) amplitude function of transient state 
c heating rate Greek symbols 
c specific heat a coefficient of thermal expansion 
D a/a2 @e effective thermal diffusivity, 

9 gravity [W +k,(l -WPFG~+PG(~ -41 
H internal heat source setting up the initial 6 porosity 

nonlinear temperature profile 6 delta function 
k thermal conductivity V”:’ a2/a2+a2/ag 
K permeability 0 temperature perturbation 
L depth of layer Y kinematic viscosity 

Pr Prandtl number, +/a, P density 
R Rayleigh number, p.gL*Hu/a: Pe PGUPfG~ + PSW - 41 

; 
time R angular frequency. 
basic temperature 

T0 initial temperature of upper and lower Subscripts 
boundaries C critical 

T, Taylor number, 4Q2L4/~: f fluid 
w vertical velocity S solid. 

and (5), is 

T(z, t) = -c(z-l)r+ 5 f y 
n= I 

x {[1-(-l)“+c]e- n’n’r-~}. (6) 

2712(~_1)2{[1-(-l)m~if~]e-‘“~‘)‘”’f-r} 

II 
The equation for w may be derived by eliminating 0 in equa- 
tions (1) and (2), then the conditions in equation (4) allow 

- 2n2(l+r)z{[l -(-l)“+‘+c] ee(m+r)*n*r-C} 

the normal mode for w c r F 3, 

w(x,y,z, t) = C A,(t) sinmnz e’(k++k2.v). 
m=l 

(7) 

Multiplying sin rrrz on both sides of the w equation and 
integrating on z from 0 to 1, the amplitude equations then 
become 

r27c2 
fT~~ +A,[p,2a2(r)p(r)+T,r2n2] = _ LRa2 

B(r) 

where 

m2r21,,,,]+ 1 ALI,, ,I, , r = I,2 ,... 

(8) 

A; =_%, u(r) = r2n2+a2+i, p(r) = r27c2+a2 

and 

LW = o z 
s 

’ a T sin mnz sin rm dz = 

[l-(- l)“-‘fc]e-‘“- $?I*, --c 

2n2(m-r)* 

[* -(- f)m+r+c] ee(m+rW_c 

27r2(m+r)2 
, mfr 

1 C.e-lm+rh’r_-C 
(9) 

--cl- 2n2(m+r)z . m =r 2 

Jm = 
6 aT 

+p’~ -p,(D’-a*) z smmnz sinmzdz = 1 I 

-{ -((m+r)2n2+p, (m+r)2n2+ :+a2 
1 11 

, m # r (10) 

i[ -3c-p.(~+a’)ct] - 2n2(i+r)2 

+p, (rw+r)‘n’+%+a’ 
[ 11 

, m = r. 

3. STEADY STATE 

Analysis of the linear stability of the steady state is, 
assuming all the time derivatives in equation (8) to be zero, 
described by 

f &Ra2[Jm,+p,m2n2z,,,,] = o. (11) I 
In order to obtain nontrivial solutions for the characteristic 
problem, the determinant of equation (11) must vanish. The 
Rayleigh numbers R as functions of the wavenumber a are 
solved for various values of p,, S/K and T,. The critical 
Rayleigh number R, with respect to the critical wave number 
a, marks the marginal state. For p, = 1, S/K = 0 and T, = 0, 
we have numerically solved R, = 16992 and a, = 3.02 as 
obtained previously [14]. Critical Rayleigh numbers R, and 
wavenumbers a, as functions ofp,, 6/K and T, are shown in 
Figs. 1 and 2, respectively. 

For small values of p7, R, and a, increase with T, rapidly, 
when 6/K is small, and slowly, when 6/K becomes large. 
However, R, and a, increase with 6/K for moderate values of 
T, and decrease with 6/K for very large values of T,. For 
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FIG. 1. Variation of critical Rayleigh number R, with Taylor 
number T,. 

large values of pr, the increasing of R, and u, with T, are 
relatively insignificant. The results show that R, and a, 
increase with p, very sensitively. 

4. TRANSIENT STATE 

The thermal convection of the transient state is governed 
by equation (9). The involved parameters are R, a', p,, 6/K, 
To and c. The Rayleigh number R may be less than or equal 
to that of the marginal state R,. The system of ordinary 
differential equations is numerically solved by using a fourth- 
order Runge-Kutta-Gill method. Foster [9] suggests that all 
the amplitude disturbances may assume the same value as 
the initial conditions. We adopt A,(O) = 1, A:(O) = 0 and 
A:(O) = I. The growth factor of average velocity dis- 
turbances is defined as 

The time for C(t) to reach a value of 1000 is chosen as the 
critical time t, for the onset of transient thermal convection. 
The choice of value 1000 is not unique, however, a larger 
value than 1000 does not change the critical time significantly 
[I 51. The dimensional time scale used is about 104-10’s. 

For given values of R, p,, 6/K. T,, and c, the wavenumber 
with respect to the minimum critical time is called the critical 
wavenumber rr,. Thermal convection, appearing with the 
flow patterns of critical wavenumber, will grow quickly. It is 
worth mentioning that thermal convection does not necess- 
arily appear with the pattern of critical wavenumber [Xl. 
Taylor-Proudman theory [4] predicts that the rotation effect 
alone acts as a stabilizing factor. A large thermal diffusivity 
means effective conduction of thermal energy throughout 
the fluid layer, and the tendency for the fluid to become 
destabilizing is, then, reduced. The frictional and form drags, 
due to a large porosity or small permeability, may suppress 
the possible thermal convection. Therefore, larger values of 
p,, d/K or T, will extend the critical time significantly. 

The critical time t, as a function of the Prandtl number p, 
is shown in Fig. 3. The values of parameters are R = 17,619, 
6/K = 100, c = 1 and the critical wavenumbers. The critical 
time decreases with pr sensitively, when p, < IO, and insig- 
nificantly, when p, > 10. The extension of critical time with 
the Taylor number is very obvious. 

FIG. 2. Variation of critical wavenumber a, with Taylor 
number r,. 

8/K ---- 
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FIG. 3. Variation of critical time t, with Prandtl number p, 
and the ratio of porosity to permeability d/k. 

FIG. 4. Variation of critical time t, with Rayleigh number R 
and Taylor number T,. 
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The critical time tc as a function of the ratio of porosity to 
permeability 6/K is also shown in Fig. 3. The values of 
parameters are R = 17,619, p, = 1, c = 1 and the critical 
wavenumbers. The critical time increases significantly with 
S/K. 

The critical time I~ as a function of the Rayleigh number 
R is shown in Fig. 4. The values of parameters are p, = 1, 
6/K = 100, c = 1 and the critical wavenumbers. When R is 
less than R, of the marginal state, the transient heating from 
below is the main factor causing the thermal convection 
and t, varies slowly with R. When R is greater than or equal 
to R, of the marginal state, the fluid flows are in the weak 
nonlinear state of finite amplitude. The higher value of R 
corresponds to a more destabilizing transient state, the 
decrease oft, with R is very significant. 

In the discussions above, the Taylor number acts as a 
stabilizing factor and extends the critical time effectively. The 
critical time t, as a function of the Taylor number r, is also 
shown in Fig. 4. The values of parameters are R = 17,619, 
p, = 1, c = 1 and the critical wavenumbers. The increase 
oft, with T, is very small, when T, < 104. 
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